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TARLE VI. Pressure derivatives of polycrystalline elastic moduli 
at different thermodynamic boundary conditions (at 298°K). 

Pressure 
derivatives dB/dp dG/dp dL/dp 

(aM'/iJph 4.19> 
3.70b 

1. 79> 6.57" 

(aMT/ap)T 4.23 1. 79 6.62 
4.100 

(aM'/ap), 4.16 1. 73 6.52 

• These are taken from Table V. 
b This is calculated from the Dugdale-MacDonald relation. Le" 

(aB'/aplT =2/'0+1. where /'0 is the Gruneisen parameter. 
o This was obtained from the Murnaghan equation of state by a curve

fitting procedure using experimental data on compression. 

Table VI, two other values of pressure derivative of the 
bulk modulus have been listed. One is a theoretical 
value based on the Dugdale-MacDonald relation,23 and 
the other is derived from the Murnaghan equation of 
state24 by a curve-fitting procedure using experimental 
data on compression.9-11 A detailed discussion on these 
quantities will follow in Sec. 5. It is seen, however, that 
these values compare reasonably well with the cor
responding quantities resulting from the ultrasonic
pressure experiments made on both the single-crystal 
and polycrystalline materials. 

4.2. Variation with Temperature 

Recalling Eq. (4.1), the temperature derivative of the 
porosity-sensitive elastic modulus is 

dM/dT= (dMo/dT) (1-a1]) -Moa(d1]/dT). (4.18) 

Since (d1]/dT) is zero, the last term drops out. Thus, 
dividing the resulting part of Eq. (4.18) by Eq. (4.1), 
we obtain 

(l/M) (elM/ dT) = (l/Mo) (dMo/dT). (4.19) 

Equation (4.19) implies that the temperature co
efficient of an elastic modulus determined on a porous 
polycrystalline specimen can be used to estimate the 
elastic modulus of the nonporous polycrystalline 
aggregates (as a function of temperature) simply by 
interpolating the room-temperature modulus of the 
porous aggregate to that of the nonporous aggregate. 
The result of such interpolations is given in Table VII. 
This represents the isotropic elastic parameters of 
polycrystalline alumina as a function of temperature, 
which are to be compared with the corresponding 
single-crystal data. 

23 J. S. Dugdale and D. K. C. MacDonald, Phys. Rev. 89, 832 
(10~3). 

24 F. D. Mumaghan, Proc. Nat!. Acad. Sci. 30, 244 (1944); 
F. D. Murnaghan, Non-Linear Problems in Mechanics 0/ Continua, 
Proreedings of tlte Symposium nn Applied Mathematics (American 
Mathematical Society, Providence, H..I., 1949) Vo!. 1. 

Figure 3 illustrates the comparison of polycrystaIline 
longitudinal modulus with the corresponding quantity 
calculated from the single-crystal data using the 
Voigt-Reuss-Hill (VRH) approximation. The single
crystal data used here are those of Tefft.7 Figure 4 is a 
similar comparison for the isotropic shear modulus. It is 
evident that the comparison is good for the shear 
modulus throughout the temperature range considered. 
For the longitudinal modulus, we note that there is a 
significant discrepancy between our data and the VRH 
modulus calculated from Tefft's single-crystal data 
(particularly at low temperatures). At present, it is 
very difficult to see why the longitudinal modulus at 
temperatures below lOOoK calculated from the single
crystal data decreases with decreasing temperature. 
Our measurements on polycrystalline specimens in
dicate exactly the opposite behavior so that the elastic 
moduli become stiffer as temperature decreases. 

5. INTERPRETATION AND DISCUSSION 

5.1. Analysis of Temperature Dependence of the 
Isotropic Elastic Moduli 

The total temperature dependence of an elastic 
modulus can be thought of as consisting of two parts: 
one, a result of an explicit temperature change, and the 
other an implicit part resulting from a change in volume 
with temperature. In other words, the elastic modulus 
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FIG. 3. A comparison between the measured and calculated 
isotropic longitudinal modulus as a function of tempelature. 
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TABLE VII. Thermo-elastic properties of polycrystalline-a -Al.O. (at 1 atm) . 

Velocities Elastic moduli 

Tem(cerature Density VI v, Vm D B' IID(e l.etio) 
OK) (g/cmB) (km/sec) (XI011 dyn/cmZ) (OK) 

4.2 3.9924 10 .951 6.448 7.146 47 .879 16.599 25 .747 1044(±3) 
77 3.9920 10.947 6.446 7.144 47 .839 16.587 25.727 1043 

100 3.9918 10.942 6.444 7.141 47 .793 16 .576 25 .691 1042 .6 
150 3.9910 10.931 6.437 7.134 47.687 16.537 25.638 1041 
200 3.9896 10 .919 6.427 7.123 47 .566 16 .480 25.593 1040 

273 3.9863 10.896 6.408 7. 102 47.326 16 .369 25 .512 1036 
300 3.986 10 .889 6.398 7.092 47 .262 16 .362 25 .507 1035 
400 3.978 10 .844 6.368 7.059 46 .778 16 .131 25 .270 1029 
500 3.969 10.798 6.333 7.021 46.277 15 .918 25 .053 1023 
600 3.960 10.750 6.296 6.981 45.763 15 .697 24.833 1016 

700 3.949 10.702 6.259 6.941 45 .229 15.470 24.602 1010 
800 3.939 10 .653 6.218 6.896 44.702 15 .230 24.396 1002 
900 3.928 10.602 6.178 6.853 44 .152 14.992 24.162 995 

1000 3.918 10.552 6.137 6.809 43.625 14 .756 23 .950 988 
1100 3.907 10.498 6.096 6.764 43.058 14.519 23 .700 981 

1200 3.897 10 .444 6.053 6.718 42 .507 14.278 23 .470 972 
1300 3.886 10.386 6.011 6.667 41.918 14 .041 23 .197 965 

M of Born-von Karman-type solids can be treated as a 
function of volume V (interatomic separation) and 
temperature ]'25: 

respect to pressure, and rearranging the results, we find 

d(lnM)/dT= -(3BT[a(lnM)/ap]T+[a (lnM)/aT]v, 

(5.2 ) M=M(V, T ) . (5.1) 

Taking logarithms and differentiating both sides with 
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FIG. 4. A comparison between the measured and calculated iso
tropic shear modulus as a function of temperature. 

!$ D. Lazarus, Phys. Rev. 76, 545 (1949). 

where BT is the isothermal bulk. modulus. Hence, from 
our data on both the pressure and temperature de
pendences of the isotropic elastic moduli, we should be 
able to separate out the changes due to temperature 
from those due to volume. Rewriting Eq. (5.2) for the 
explicit term 

[a (lnM) laT]v=d(lnM) j dT +.BBT[a (lnM) l ap ]T. 

(explicit) = (total) + (implicit) . (5.3) 

In Table VIII, both the pressure and temperature 
coefficients of longitudinal, shear, and bulk moduli 
evaluated at zero-pressure and 298°K are listed. The 
quantities of our interest (a InMjaTh , found from 
these values, are entered in the last column. Any 
assumption that an elastic modulus is a unique function 

TABLE VIII. Pressure and temperature coefficients of the adia
batic elastic moduli of polycrystalline a-AI.O. (at 298°K). 

Adiabatic 
elastic 

modulus 

G 

- 8.23 

-9 .79 

- 6.664 

+ 5.56 

+ 4.45 

+ 6.658 

- 2.67 

-5 .34 

- 0.006 

• Based on Eq. (5.3) , where ,s = 1.641XIO-,/oK and BT=25.346XIOll 
dyn/cm·. 


